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The surrounding of a vertex in a network can be more or less symmetric. We derive measures of a specific
kind of symmetry of a vertex which we call degree symmetry—the property that many paths going out from a
vertex have overlapping degree sequences. These measures are evaluated on artificial and real networks.
Specifically we consider vertices in the human metabolic network. We also measure the average degree-
symmetry coefficient for different classes of real-world network. We find that most studied examples are
weakly positively degree symmetric. The exceptions are an airport network �having a negative degree-
symmetry coefficient� and one-mode projections of social affiliation networks that are rather strongly degree
symmetric.

DOI: 10.1103/PhysRevE.74.036107 PACS number�s�: 89.75.Fb, 89.75.Hc

I. INTRODUCTION

With the advent of modern database technology numerous
large scale network datasets have been made available. This
development has triggered a surge of activity in studies of
statistical network properties �1–3�. The underlying idea of
these studies is that the network structure �the way the net-
works differ from completely random networks� contain
some information of the function, both locally and globally,
of the network. Hence a common theme in these works has
been the development of structural measures to characterize
network structure. In this paper we propose and evaluate a
measure of a previously unstudied network structure—a spe-
cial case of symmetry we call degree symmetry. In geometry
an object is symmetrical if it is invariant to rotations, reflec-
tions, and so on. In networks, with no given geometrical
embedding, these concepts must be relaxed. Furthermore, we
would like to have a continuous measure saying not only if a
vertex is a local center of symmetry or not, but also how
symmetric the vertex is. The aspect of symmetry we address
is, roughly speaking, that if you look at the object �network
in our case� in different ways from a symmetric vertex it still
looks the same. The process of “looking” will in our case be
walking along paths �non-self-intersecting sequences of
edges�. Furthermore, since degree �number of neighbors� is
commonly regarded as the most fundamental quantity relat-
ing a vertex to its function, we say two vertices “look the
same” if they have the same degree. We will thus derive our
measure by performing walks along all paths from a vertex
and compare the sequence of degrees of the vertices along
these paths. The situation we have in mind is depicted in Fig.
1—all paths from the central vertex have degree sequences
starting with �3,2,¼�, thus the central vertex is highly degree
symmetric.

The rest of the paper is organized as follows: First we
give a detailed derivation of the degree-symmetry coefficient
�in two different versions, appropriate for different needs�.
Then we evaluate these on example networks and a bio-
chemical network. Finally we discuss the average degree
symmetry of different classes of real-world networks.

II. DERIVATION OF THE MEASURE

We will consider the network represented by a graph G
= �V ,E� of N vertices, V, and M edges, E. For a vertex i to

have high degree symmetry it has, as mentioned, to have
many paths with the same sequence of degrees. We will use
a cutoff l for the pathlength and consider only paths of that
length. The reason for this cutoff is threefold: First, in all
�with possibly some curious exception� network processes, a
vertex is more affected by its closest surroundings then ver-
tices further away. Thus one would like to have a lower
weight on the contribution from distant vertices. Second, the
number of vertices n steps away grows fast with the distance
from i. For finite networks this means that the paths soon
reach the periphery of the network where unwanted finite-
size effects set in. Third, for computation speed, one benefit
from a cutoff.

Assume there are p paths of length l from a vertex i. We
then denote the degree sequences of these paths

FIG. 1. �Color online� Illustrations of degree symmetry. Con-
sider paths of length-2 �i.e., l=2�. All paths out from the central
�black� vertex have the degree sequence �3,2� meaning the central
vertex has high degree symmetry.
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Ql�i� = ��k�v1,i,l
1 �, ¯ ,k�v1,i,l

l ��� ,

� ,

��k�vp,i,l
1 �, ¯ ,k�vp,i,l

l ��� , �1�

where k�v� denotes the degree of a vertex v and vm,i,l
j is the

jth vertex of along the mth path of length l leading out from
i. Then if there are unexpectedly many vertices at the same
�j� index in the sequence with the same degree, the vertex i
is a local center of degree symmetry. A rough symmetry
measure would thus be to count the fraction of index pairs
with the same degree, i.e.,

s̃l�i�
�

= �
0�n�n��p

�
j=1

l

��k�vn,i,l
j �,k�vn�,i,l

j �� , �2�

where

� = �l − 1�	p

2

 and ��x,y� = �1 if x = y ,

0 if x � y .
� �3�

This measure is very crude and lacks many desired statistical
features. For example, all paths that go via a particular
neighbor of i will give a contribution to the sum. In practice
this means that vertices with a high degree vertex rather far
from itself �but closer that l� will trivially have a high
s̃l�i� /�. A first step would thus be to omit the contribution of
vertices occurring in many sequences of Ql�i� at a specific
index. That is, for all l�� �0, l� one wants to exclude the
terms

�
n,n�

��k�vn,i,l
1 �,k�vn�,i,l

1 �� , �4�

where n and n� are indices of paths that are identical to the
first l� steps, from Eq. �2�. Let Sl�i� denote the number of
such terms.

To calculate Sl�i� consider a path P= �i , . . . , j� of length
l�� l. Let bl�P , i� be the number of paths from i of length l
that start with the path P. We call bl�P , i� the branching
number of P, see Fig. 2�a�. All pairs of paths starting with P
will contribute to s̃l�i� a distance l� from i �since they all pass
through j�. Let ��P , i� be the set of neighbors to j that is not
on the path P from i to j, see Fig. 2�b�. �The number of

elements in ��P , i� is thus kj −1.� This situation gives a con-
tribution

Sl�P,i� = 	bl�P,i�
2


 + �
j���P,i�

Sl��P, j�,i� �5�

from vertices of indices in the interval �l� , l� of Ql�i� to s̃l�i�,
where �P , j�� denotes the path �i , . . . , j , j��.

To further improve the measure one would like to, assum-
ing some null model, subtract the expected random contribu-
tion to s̃l�i� /�. If this can be achieved one would have a
symmetry coefficient sl�i� that is zero when the symmetry is
what can be expected from the null model, larger if i is a
center of unexpectedly high symmetry, and less than zero if i
is degree antisymmetric. A final symmetry coefficient could
thus be written

sl�i� =
s̃l�i� − Sl�i�
� − Sl�i�

− �, provided � � Sl�i� , �6�

where � is the expected value of �s̃l�i�−Sl�i�� / ��−Sl�i�� in a
null model. �=Sl�i� can only happen if there is one or no
path of length l. In both these cases the degree symmetry
concept makes no sense so, if �=Sl�i�� �0,1�, we set sl�i�
=0. The null model we assume is random constrained on the
degree distribution of the network. That is, given the fraction
pk of k-degree vertices the network is as random as possible.
As it turns out � is tricky to calculate analytically. There are
two ways to proceed—either one calculates an approxima-
tive � or one obtains � via averaging �s̃l�i�−Sl�i�� / ��
−Sl�i�� over realizations of the null model. Except being
more accurate, the latter approach has the advantage of giv-
ing an error estimate of sl�i�—one can by specifying a p
value define significantly symmetric, or antisymmetric, ver-
tices. We will use both approaches: The approximative
method for analyzing example networks and the numerical
method for analyzing real-world data.

We obtain an approximative value of �, �app, by assuming
� is approximately equal to the probability that a pair of
vertices, reached by walking along paths, is the same. Note
that, since there are k ways into a degree-k vertex, when
following a path the probability to reach a degree-k vertex is

kpk

�
k�

k�pk�

=
kpk

k�
. �7�

Thus the probability �app that two vertices of the same degree
is reached by following different paths is

�app = �
k

pk	 kpk

k�

2

=
1

k�2�
k

k2pk
3. �8�

One reason this approach is not exact is that the number of
terms in the expression for s̃l�i� increases with the degree of
the j in ��P , i� of Eq. �5�. There are other higher-order ef-
fects related to other correlations between the path structure
and the degree of the vertices.

FIG. 2. �Color online� Illustrations of concepts in the derivation
of the degree symmetry coefficient. �a� illustrates the branching
number. Consider paths of length-3 out from i. The branching num-
ber of the path �i , j� is five �there are five paths from i of length-3
that goes through j�. The branching number at j� is two. �b� shows
the set ��P , i�, where P is the path �i , j , j��.
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To summarize we have two measures of local vertex sym-
metry, one approximative

sl
app�i� =

s̃l�i� − Sl�i�
� − Sl�i�

−
1

k�2�
k

k2pk
3, �9�

and one based on Monte Carlo sampling

sl
MC�i� =

s̃l�i� − Sl�i�
� − Sl�i�

− � s̃l�i� − Sl�i�
� − Sl�i�

� . �10�

The sampling is conveniently done by random rewiring the
edges of the original network �4�.

III. ALGORITHM

The heart of the algorithm, as suggested in the preceding
section, is a depth-first search with depth l. When returning
along the traced out paths the branching number can be cal-
culated recursively through

bl�P,i� = �1 if P has length l ,

�
j�����P,j��,i�

bl��P, j��,i� otherwise. � .

�11�

Sl�Pi� can be calculated simultaneously using Eq. �5�. A
slight complication is that the same vertex may appear in
different branches of the depth first search while calculating
b and s̃. For small cutoff values this is easy to handle: For
l=2 it does not affect the calculation at all. For l=3 one
would only have to keep different depths �of Eqs. �5� and
�11�� separate. For the calculation of s̃l�i� the terms of Ql�i�
must be stored. Since the number of paths p grows fast with
l, this can be quite a constraint for a large l. Luckily it suf-
fices to store a histogram h�l� ,k� counting the number of
vertices of degree k at position l� of the paths Ql�i�. p �and
thus �� can be calculated as the number of time the depth l
of the depth first search is reached. The running time of the
algorithm is O�p�. A mean field approximation for networks
with few triangles gives O�p��O�k�l�.

IV. EXTENSIONS AND CONSIDERATIONS

The method outlined above can quite straightforwardly be
extended to network with directed edges, distinct types of
edges or �integer� edge weights.

Imagine a network with z different edge sets E1 , . . . ,Ez.
Such networks frequently occur in cellular biochemistry—
e.g., protein interaction networks where different types of
protein interaction can be recorded �5�, or gene regulation
networks where the edges can be activating or inhibitory.
One sensible way to extend the above procedure is to use the
union of the edges as your graph but to say two pairs of
vertices in Ql�i� are identical if their degrees with respect to
all of the networks are the same. To formalize this Ql�i�
would be generalized to

Ql�i� = ��k�v1,i,l
1 �, ¯ ,k�v1,i,l

l ��� ,

� ,

��k�vp,i,l
1 �, ¯ ,k�vp,i,l

l ��� , �12�

where k�v� is a vector with v’s degrees with respect to the
different edge types, and the � function of Eq. �4� would be
one if the arguments are equal at all their indices, and zero
otherwise. The �app must be redefined too,

�app =
1

k�2 �
k�,k�

k�pk�k�pk��
i=1

z

�
j=1

z

pi�kj�k��pi�kj�k�� , �13�

where pi�k �k�� is the conditional probability that a vertex has
degree k with respect to edge set Ei given that its degree in
the union network is k�. The case of a directed network can
be treated similarly—one consider paths following edges in
both directions but a vertex pair gives a contribution to s̃
only if both the in and out degrees are the same.

The approach of Sec. III can straightforwardly be applied
to networks where multiple edges are allowed. Since mul-
tiple edges can be used to model weighted graphs �6� the
generalization to weighted graphs �at least where edge
weights represent the probability of following an edge� is
simple. The other aspect of multigraphs, self-edges, is trivi-
ally dealt with—by the requirement that paths should not
intersect themselves a self-edge will never be followed and
can thus be omitted already when the graph is constructed.

The overlap required for a vertex pair to be considered
equal in the calculation of the symmetry coefficient is rather
strict. Sometimes one would like to treat two paths as similar
even if their degrees differs slightly. Particularly, this applies
to broad degree distributions. The functional difference be-
tween degree-2 and degree-3 vertices may be significant; but
whether a vertex has degree 1002 or 1003 probably does not
matter. To achieve such a relaxation one can construct a in-
teger sequence K1�K2� . . . and let

��k,k�� = �1 if Ki � k,k� � Ki+1 for some i ,

0 otherwise.
� . �14�

That is one constructs a series of equivalence classes of ver-
tices. For a power law, or similarly broad, degree distribu-
tions one can let Ki+1−Ki increase exponentially with i. In
this case one also must modify the definition of �app,

�app =
1

k�2�
i
	 �

Ki�k�Ki+1

pk
	 �
Ki�k�Ki+1

kpk
2
. �15�

V. DEGREE SYMMETRIES OF EXAMPLE
NETWORKS

In this section we evaluate the measure, for example, net-
works and real-world networks. We will use the smallest
nontrivial cutoff l=2 throughout this section. Most conclu-
sions hold for l=3 or 4.
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A. Small test graphs

To get a feeling for the sl measure we start by considering
a few small test networks, see Fig. 3. In Fig. 3�a� we display
a network with the same degree symmetry, with respect to
the central vertex �triangle�, as Fig. 1. As expected the cen-
tral vertex has a strong degree symmetry coefficient. To carry
through the calculation of Eq. �9� once we obtain the degree
distribution p2=8/13, p3=4/13, and p4=1/13 giving �app

=165/832�0.198. All length-2 paths out from the central
vertex have the degree sequence �3,2� so s̃2���=4, S2���
=4, and �=28 giving s2

app���=667/832�0.802. The
degree-3 vertices �squares� have two degree sequences of
their outgoing paths �4,3� and �2,2�, whereas paths from
degree-2 vertices �triangles� have degree sequences �3,4� and
�2,3�. This difference is larger than expected from the null
model �random networks with eight degree-2 vertices, four
degree-3 vertices, and one degree-4 vertex�, thus the negative
s2 values for these vertices.

In Fig. 3�b� we show a graph where all vertices have
positive degree-symmetry coefficient. Paths from degree-2
vertices have only the degree sequence �3,2� and paths from
degree-3 vertices have only the degree sequence �2,3�. Thus,
for every vertex, the view of degrees along the path out to
the rest of the network is the same no matter which direction
one looks in from that vertex. A radically different view is
seen in Fig. 3�c�. In this case the vertices have three distinct
positions in the network. The vertices marked with squares
have degree-2 and -4 outgoing paths of degree sequences
�2,4�, �4,4�, �4,2�, and �4,2�. The circles, despite their differ-
ent network position �as being part of triangles�, have the
same set of degree sequences for their paths of length-2. The
degree-3 vertices have six length-2 paths: three having the
degree sequence �2,2�, three having degree sequence �4,2�. It
is easy to convince oneself that this is close to as dissimilar
a network with four degree-2 and two degree-4 vertices can
be. Consequently all vertices have negative degree-symmetry
indices. It is worth pointing out that Fig. 3�c� possesses other
symmetries than degree symmetry. The layout has, for ex-
ample, reflexive symmetry along a vertical axis. We empha-
size that such symmetries would need to be captured by
other measures.

B. Regular networks

If all vertices have the same degree a network is called
regular �7�. Then by definition all paths are known to fully
overlap. This trivial overlap should be canceled in our sym-
metry measure so sl�i�=0 for all l and i. Since Sl�i� is the
number of terms in s̃l�i� and all these terms are one we have
Sl�i�= s̃l�i�=�. Furthermore, �app=1 which gives sl�i� for all
vertices and cutoff lengths.

C. Random graphs

Next we evaluate the average approximative symmetry
coefficient sapp� for random graphs �7�—graphs obtained by
successively adding M edges between N vertices with the
restriction that no multiple edge, or self-edge, may occur.
Such networks have no correlations at all and can serve as a
reference point for neutrality �2�. Ideally we would like such
networks to, on average, have a degree-symmetry coefficient
of zero. As seen in Fig. 4 sl

app� converge to a small but
positive value. The decay is roughly inversely proportional
to N—the same scaling as the fraction of triangles in the
network—which suggests that the presence of triangles, and
perhaps other short cycles, is an important source of finite
size effects of sl

app. We conclude that the Monte Carlo sam-
pling measure sl

MC �or a more elaborate measure� is needed if
one wants to compare different networks. If, on the other
hand, one aims to compare different vertices of the same
network the faster sl

app�i� calculation is sufficient. This is not
an uncommon situation in the design of network measures.
Another example of this where neutrality is nonzero in the
large-N limit is modularity, measuring subgraphs that are
densely connected within but not between each other �8�.

VI. DEGREE SYMMETRIES OF REAL NETWORKS

In this section we apply our measures to real-world net-
works. First we take a look at the symmetry coefficients of
specific vertices in the metabolic network of humans, then
we look at the average symmetry coefficients of various
classes of networks.

A. Human metabolic networks

An important use of statistical graph theory is to charac-
terize chemical reaction networks. Of many possible network

FIG. 3. �Color online� Degree symmetries of small example
networks. �a� is consistent with the example Fig. 1�a�. �b� is an
example of a graph with only positive degree symmetries. �c� shows
a graph with only negative degree symmetries. The cutoff length l
=2 is used.

FIG. 4. �Color online� The average approximative symmetry
coefficient for l=3 and random graphs with M =2N. The line is a fit
to a power-law decay form �0.124+0.435N−1.02, to be exact�.
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representations �9� we let vertices be chemical substances,
and for all reactions of an organism we link substrates with
products. For example, the hypothetical reaction A+B↔C
+D would contribute with the edges �A ,C�, �A ,D� and
�B ,C�, �B ,D� to the metabolic network. The data is derived
from the KEGG database, and described in detail in Ref.
�10�. Since the degree distributions of metabolic networks
are highly skewed �11� we use a exponentially increasing set
of intervals as equivalence classes �as discussed in the con-
nect of Eq. �14��: Kn=2n.

It has been argued that degree is strongly related to the
function of the chemical substance �11,12�. This means that
the degree symmetry potentially can give additional informa-
tion about the function of the vertices. For the human meta-
bolic network, and l=2, roughly half of the vertices have a p
value of less than 5% �i.e., in the null-model sampling of the
calculation of s2

MC, less than 5% or more than 95% of the
values of

s̃l�i� − Sl�i�
� − Sl�i�

�16�

are smaller than the value of the real network�. In Fig. 5�a�
we show the 2-neighborhood of one vertex with significantly
higher s2

MC than expected; Fig. 5�b� depict the
2-neighborhood of a vertex with significantly higher s2

MC.
The reason these particular vertices are used as examples is
that their 2-neighborhoods are of appropriate sizes, neither
too big, nor too small, to be displayed and described. Sper-
mine, Fig. 5�a�, is a substance with high degree symmetry—
s2

MC=0.89±0.02. Both its neighbors are in the same degree-
equivalence class of vertices with degree 4 to 7. Of vertices
two steps away from spermine there is also a significant
overlap with two �out of four� neighbors to the neighbor
spermidine being in the equivalence class defined by degrees
in the interval �8,16�; whereas two vertices are in the equiva-
lence class of degrees in �4,8�. The three paths from sper-
mine via S-adenosylmethioninamine also contribute to the
overlap in the two steps from spermine as two vertices �me-
thylthioadenosine and spermindine� have degrees in the same
equivalence class. The neighborhood of C04850, seen in Fig.
5�b�, is visually less balanced and also having a negative
degree symmetry—s2

MC=−0.11±0.01. We note that there are
some vertex pairs in the second neighborhood whose degree-
classes overlap, but apparently this is not enough to make the
symmetry coefficient nonnegative.

B. Average symmetry values

So far we have discussed degree symmetries of vertices.
In this section we average sl over V to obtain a graph-wide
measure for degree symmetry. In Table I we display values
of s2

MC for a number of different network types. Some of
these have highly skewed degree distributions. For these, the
exponentially increasing degree equivalence classes of Sec.
VI A are appropriate. Since we intend to compare all net-
works we use the same equivalence classes for all networks.
The first observation is that almost all networks have a posi-
tive average symmetry coefficient. The only clear exception

is the airport network. This means that if you start a two-leg
airplane trip at a particular airport, choosing between two
random itineraries �without caring about the frequency of
flights�, then the probability of the airports along these itin-
eraries being different in number of connections is smaller
than in a random network. The strongest degree symmetries
are found in one-mode projections of social affiliation net-
works. Note that the other social networks, derived from
questionnaires and electronic communication does not have
such strong symmetry coefficients. In one-mode projections
high-degree vertices are known to have strong tendency to
attach to other high-degree vertices, and low-degree vertices
to attach to other low-degree vertices—so-called assortative
mixing �26�. If this property is strong there will be regions of
vertices with high-degree and other regions with low-degree
vertices. The paths within these regions would also have
similar degree sequences. Thus high assortative mixing can
be related to high degree symmetry, the first causing the
second or vice versa. They are, of course, not equivalent—
e.g., the example network with all vertices having positive
symmetry coefficients �Fig. 3�b�� is maximally disassorta-

FIG. 5. �Color online� The 2-neighborhood of spermine—a ver-
tex with high degree symmetry—�a�, and C04850—a vertex with
low degree symmetry—�b�, in the human metabolic network.
The symbols indicate the equivalence classes defined by
exponentially growing intervals. Filled circles have degree 2, un-
filled circles have degree 4 or 5, a vertex symbolized by an n-gon
have degree in the interval �2n ,2n+1�. In case the chemical names
are overly long the KEGG codes are given �“C” and five digits�:
C07282 represents eIF5A-precursor-deoxyhypusine, C04850
represents 1 ,3-�-D-galactosyl-�	-1 ,4-L-fucosyl�-N-acetyl-
D-glucosaminyl-R, C04556 represents 4-amino-2-methyl-5-
phosphomethylpyrimidine, C04467 represents 	-L-fucosyl-1 ,2-
�-D-galactosyl-R and C01311 represents 1 ,4-�-D-galactosyl-
�	-1 ,3-L-fucosyl�-N-acetyl-D-glucosaminyl-R.
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tively mixed �in the sense of Ref. �26��. Where the weak
symmetry coefficients of other networks come from is out-
side the scope of this investigation. One possible explanation
would be that functional units �27� might often be degree-
symmetric centers.

VII. SUMMARY AND CONCLUSIONS

We have derived a measure for a specific notion of sym-
metry in networks—the property that the paths out from a
vertex have overlapping degree sequences. The measure is
designed so that random networks, conditioned only to have

the same set of degrees as the original network, have the
value zero. We propose two versions of the symmetry coef-
ficient, the first being approximately zero for random net-
works, the second requiring a randomization procedure �and
thus longer simulation time� but being more accurately zero
for random networks. The measure was evaluated on ex-
ample graphs. We show that they are able to detect vertices
in degree symmetric, and potentially functionally meaningful
positions in the human metabolic network. The average de-
gree symmetry of various networks were also investigated.
We found almost all networks having a weakly positive de-
gree coefficient. The exceptions being the network of Ameri-

TABLE I. The network sizes N and M and the average numerical degree-symmetry coefficient s2
MC of real-world networks. In the

interstate network the vertices are American interstate highway junctions and two junctions are connected if there is a road with no junction
in between. In the street networks the vertices are Swedish city-street segments connected if they share a junction. In the airport network the
vertices are American airports and edges represent a regular, nonstop route. In the citation networks the vertices are papers and two papers
are connected if one cites the other. The “scientometrics” network consists of papers from the journal Scientometrics. The “small-world”
network are all papers citing Ref. �13� or having the phrase “small world” in the title. The board of directors and Ajou student networks are
derived from one-mode projections of affiliation networks �where edges goes from persons to corporate boards and university classes,
respectively�. The Ajou student network is averaged over graphs of 16 semesters. One edge represents two students taking at least three
classes together that semester. The high school networks are gathered from questionnaires—an edge means that two persons have listed each
other as acquaintances. It is averaged over 84 individual schools. In the electronic communication networks one edge represent that at least
one of the vertices has contacted the other over some electronic medium. The food webs are networks of water-living species and an edge
means that one species prey on the other. For the protein networks an edge means that two proteins interact �the two graphs correspond to
two different types of experiments determining the interaction edges�. The metabolic networks consist of chemical substances and edges are
constructed as described in Sec. VI A. Values for animal metabolism is averaged over six networks, fungi metabolism is averaged over two,
and bacteria metabolism is averaged over 96 networks.

Network Reference N M s2
MC

Geographical networks Interstate highways 935 1315 0.016±0.003

Streets, Stockholm �16� 3325 5100 0.014±0.003

Streets, Malmö �16� 1868 3026 0.020±0.003

Streets, Göteborg �16� 1258 1516 0.026±0.003

Airport �14� 332 2126 −0.0573±0.0002

Citation networks Scientometries �15� 2728 10398 0.015±0.020

Small world �15� 233 994 0.007±0.002

One-mode projections of
affiliation networks

Board of direction �17� 6193 43074 0.175±0.004

Ajou University students �18� 7285±128 75898±6566 0.13±0.01

Acquaintance networks High school friendship �19� 571±43 1104±60 0.020±0.002

Electronic communication networks E-mail �20� 3186 31856 −0.01±0.01

Internet community �21� 28295 115335 0.01898±0.0001

Food webs Little Rock lake �22� 92 960 0.042±0.001

Ythan estuary �23� 134 593 0.027±0.002

Neural network C. elegans �24� 280 1973 0.0839±0.0001

Biochemical networks S. cervisiae protein �5,25� 4580 7434 0.0205±0.0001

S. cervisiae genetic �5,25� 4580 5129 0.0996±0.0001

Animal metabolism �10� 1621±123 4662±473 0.02±0.01

Plant metabolism, A. thaliana �10� 1561 4302 0.0133±0.0003

Fungi metabolism �10� 1281±97 3654±289 0.03±0.02

Bacteria metabolism �10� 1070±35 2776±109 0.018±0.002
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can airports and their interconnections �having a negative
degree-symmetry coefficient� and one-mode projections of
social affiliation networks �having rather strongly positive
values�. Our measure is not the first to be based on a the
properties of paths going out from a vertex. For example,
people have been using path counts for assessing the func-
tional similarity of pairs of vertices �28–30�. In social net-
work studies such measures are commonly called “ego-
centric” �31�.

Symmetry concepts have been successfully utilized in
many field of physics. We believe degree symmetry, and
other classes of network symmetries, will be a fruitful direc-
tion of future network studies. Degree symmetry is in par-
ticular, we believe, an important concept for networks where
degree is strongly related to the function of the vertex. Two
open questions from this study is what causes the rather
ubiquitous weakly positive degree symmetries, and what

process in the airline decision making that causes the nega-
tive average symmetry coefficient of the airline network.
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